题 目:Penetrating Sporadic Return Predictability
主讲人:涂云东
时 间:2022年12月15日19:00-22:00
地 点:腾讯会议:970-824-974
扫码入会
摘 要:Return predictability has been one of the central research questions in finance for many decades. This paper proposes a predictive regression with multiple structural changes to capture the sporadic predictive ability of potential predictors for the return series. An adaptive group Lasso procedure, augmented with a forward regression for break screening, is adopted to efficiently and consistently identify the structural breaks in the predictive regression, with predictors exhibiting low signal strength and various degrees of persistence. To enhance the prediction accuracy, adaptive Lasso is further used to eliminate the irrelevant predictors and is shown to achieve the oracle property. Simulation studies demonstrate the effectiveness of the proposed methods in break detection and predictor selection, and further show that ignoring structural breaks could abate predictability. The application to predicting U.S. equity premium illustrates the practical merits of our methodology in revealing the return predictability that changes over time.
主讲人介绍:涂云东,北京大学光华管理学院商务统计与经济计量系和北京大学统计科学中心联席教授。入选首批“日出东方”北大光华青年人才,教育部“长江学者奖励计划”青年长江学者,两次获评北京大学优秀博士学位论文指导教师。2004年获武汉大学数学与统计学院信息与计算科学专业学士学位,2006年获武汉大学经济与管理学院数量经济学专业硕士学位,2012年获美国加州大学河滨分校经济学博士学位,同年6月加入北大光华。曾获世界计量经济学会(Econometric Society)、加州计量经济学会议等学术组织提供的青年学者研究资助以及Phi Beta Kappa International Scholarship Award。亚太青年计量经济学者会议(YEAP)发起人和组织者。30余篇学术论文发表在Journal of Econometrics, Econometric Reviews, Journal of Business and Economic Statistics, Oxford Bulletin of Economics and Statisitics,Statistica Sinica,Journal of Empirical Finance,Computational Statistics and Data Analysis, 《系统工程理论与实践》,《数理统计与管理》等国际国内知名专业杂志,并为多个专业学术杂志和自然科学基金匿名评审。主持多个自然科学基金项目。理论研究领域涵盖时间序列模型、非参数/半参数计量方法、模型选择和模型平均、大数据建模、金融计量经济学、模型设定检验等;应用研究包含宏观经济预测、价格指数建模、金融市场预测、环境污染预测、新冠肺炎预测等。